Your Check Mate: How Good is Your Chess Opening?

Justin Lim*

Hover over the map to see the opening, click to see even more data, or just scroll down to play some chess!
Sicilian Queen's King's Caro-
Defense Pawn Pawn Kann
11.8% Game Game Defense

5.3% 3.5% 3.2%
Scandinavian
Defense -
4.6% Italian Ruy
Game Lopez
31% 24%
French
Defense
2 English
Opening Modern
3.6% Defense

2.4%

Matthew Tung’
MIT

See the opening and explore more by playing some chess yourself!

win/oraw Rates for Chess opening by Rating for

100

e0-
®
e 12 o 2600 3do
« Amateur

Rating (Elo) Expert =

oraw Rate O

wi

Figure 1: Your Check Mate. Left: Treemap showing the most popular openings in a given skill and time range. Right: Interactive

chessboard showing the win and draw rates of each opening.

ABSTRACT

Chess is a complex game with a staggeringly large set of possible
positions. Still, the first moves made in each game of chess (the open-
ing moves) are very well-studied; most of them even have names. In
this paper, we tackle the challenge of producing an interactive visu-
alization that allows users to explore chess openings across several
parameters, namely time and player skill. We utilize a treemap and a
stacked bar chart to visualize information, such as the popularity and
success of different openings. Through interactive elements such as
an interactive chessboard, tooltips, and autoscrolling, we created a
site to enable a user-friendly exploratory experience, even for users
unfamiliar with chess.

Index Terms: Human-centered computing— Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization— Visualization design and evaluation methods

1 INTRODUCTION

Chess is one of the world’s oldest and most popular games, whose
origins have been traced back as far as the 7th century. Today, chess
is played by millions around the world on a daily basis, thanks
to the ever-increasing popularity of online chess services, such as
Chess.com, which boasts over 20 million users [5], and lichess.org,
another popular platform. It has also exploded in popularity over the
last year: users on the popular streaming platform Twitch watched
18.3 million hours of chess content in January 2021, nearly as much
as was watched in the previous year combined; part of this success
may be attributed to the runaway success of Netflix’s series The
Queen’s Gambit, which tells the story of a chess prodigy’s path to
success [11].

The game of chess is extremely complex, but even though there
are more than 10'20 possible chess games [14], the opening moves
of the game are extremely well-studied. The Encyclopedia of Chess
Openings lists 500 different openings, grouped into categories such

*e-mail: justinl @mit.edu
Te-mail: mtung@mit.edu

as “Flank Openings”, “Open Games”, and so on [13]. Some open-
ings have been studied to almost thirty moves in, aided by the
development of powerful chess engines such as Stockfish [9], which
are significantly more powerful than human players.

In this paper, we address the broad challenge of designing an in-
teractive visualization to allow users to explore and learn about chess
openings. We identify two axes of interest: skill level, as indicated
by the standard chess rating systems, and time. Thus, our goal is to
answer the following questions: for a given range of time and player
skill, which openings were the most popular? How much success did
these players find with these openings? We present a visualization
that enables the user to answer these questions. We utilize a treemap
and a stacked bar chart to visualize this information. Furthermore,
our visualization integrates different types of interaction to enable
and guide the user in their own exploration. For instance, users can
play out a game of chess on a live chessboard using their own moves,
and have the visualization dynamically respond to their play.

2 RELATED WORK

We build upon work from the Javascript libraries chessboard.js [1]
and chess.js [2]. The first library providers a visualization of a
chessboard, and the second library enables piece movement, validity
checking, and other useful features. Our visualization is built entirely
in D3.js [3], and various tutorials found on the Observable platform,
such as for treemaps [10], histograms [4], and stacked bar charts [8].
Finally, our work relies on the data provided by the lichess.org open
database, which contains over 2 billion chess games played on the
lichess.org website since January 2013 [6].

3 MEeTHODS
3.1 Data Cleaning

The entirety of the lichess open dataset takes up 539GB of disk space
in its compressed form. Thus, to make it tractable for an interactive
and dynamic visualization, we had to reduce the dataset to contain
only the information we needed. Figure 2 shows an example entry
from a single game in the dataset. It contains various metadata such
as the event the game was played in, the date and time it was played,
each player’s username and rating, and so on. We distilled this
dataset down to the five essential pieces of information we needed:

[elackratingDiff "+1"]
[whiteTitle "FM"]

ian pefense: 01d sicilian"]
[TimeControl "200+0"]
[Termination "Time forfeit"]

i
. Bb37! { [xeval 7 c4 { [weval

{ [Xeval 0.2] . & { [¥eval 0.6]

Figure 2: Sample entry from the lichess.org open dataset, repre-
senting a game of chess. Screenshot taken from https://database.
lichess.org/.

1. Date: Since we are interested in changes in chess openings
across time, we record the date that each game was played.

2. Result: This is either “1-0”, “0-17, or “1/2-1/2”, representing a
win, loss, and draw for the White player, respectively.

3. WhiteElo, BlackElo: These represent the skill ratings of each
individual player according to the Elo rating system [12].

4. Opening: The name of the opening that was played in each
game, for instance, the “Sicilian Opening.”

5. Moves: The exact sequence of moves that were played in the
game, in the format of a PGN. Since we are only interested
in the opening of the game, we truncate it to the first 8 moves
played, 4 from each player.

In our Github repository, this is done via the Python script
preprocess.py. We use regular expressions to filter out these
irrelevant information, such as the clock status and engine evalu-
ations. We also dealt with inconsistencies in the structure of the
data across time. For instance, the datasets from early 2013 had no
attribute named “Date”; in these cases, we take the attribute “UTC-
Date”. These were compiled into a TSV format to be easily readable
by D3 and Javascript.

Since it is infeasible to consider all 2 billion games in our visual-
ization, we also have to reduce the number of games present in our
dataset. To preserve the distribution of games over time, we take the
same number of games (2,000) from each month, to obtain a final
“small” dataset for each month in TSV format. Each of these “small”
files are around 190KB in size. This process is done via the bash
script reduce_data.sh. The combination of data preprocessing
and subsampling enabled us to get a dataset that is representative
over time, but still feasible for us to perform computations on. The
result is a visualization that is fast and responsive to user input.

3.2 Visual Encodings

We decided on a two-part visualization for this project. The first is a
treemap that shows the most popular openings for the selected range
of time and rating. The second is a stacked bar chart that shows the
win and draw rates for an opening on the interactive chessboard.

3.2.1 Treemap

For our Minimum Viable Prototype (MVP) for this final project,
we had chosen a different encoding: a line graph. Upon feedback
from our presentation group as well as from peer review, we realized
several flaws with this idea. Firstly, it tends to be very cluttered
especially for the less common openings, since most of them have
similar frequencies. Secondly, we realized it was not friendly to
a newcomer to chess, since they do not know the names of spe-
cific openings. Thirdly, the trends across time are relatively stable
with some notable exceptions, so it would be better if the encoding
highlighted those instead.

In response to these reviews, we chose a treemap encoding to
visualize the popularity of chess openings over time. We additionally
incorporate several interactive elements to it:

1. When the user hovers over a node in the treemap, a tooltip
appears showing what the chess opening looks like, on a chess-
board. The tooltip is positioned on the page so that it does not
obscure the name of the opening.

2. When the user hovers over a node, the cursor becomes a pointer,
showing that the user may click on it.

3. Upon clicking a node, the screen scrolls down to the chess-
board, where the chessboard is populated with the opening that
the user just clicked on.

The treemap elegantly addresses the flaws of our previous visu-
alization, and provides an effective visualization of each opening’s
popularity and the tooltips provide much needed context.

3.2.2 Interactive Chessboard

One main drawing component that we had from the beginning of this
project was an interactive chessboard. Since our problems revolves
around the game of chess and specific moves, we thought it was
imperative to have some way to visualize the move themselves and
be able to see and play with it. Using the aforementioned chess
libraries, we were able to integrate a chessboard onto our site and
have it interact with the other visualizations while also allowing the
user to play chess normally.

In addition to the front end, one way that one can operate with the
chessboard API is via PGN, or Portable Game Notation. A standard
plain text format for recording chess games, which can be read by
humans and is also supported by most chess software [7], we are
able to leverage the API to move the board by inputting a PGN,
as well as keep track of it when the user makes a move. Since the
lichess database also had PGN data, we able to use it to interact with
the board and vice-versa.

So when the user interacts with the treemap and clicks on an open-
ing, it then calls a function to load the corresponding opening PGN
to the board, allowing for the user to further visualize the opening.
The chessboard’s PGN also gets sent to next the visualization, acting
as a filtering criteria by checking what games start with the opening
PGN. When a user makes a move on the chessboard, it also updates
this filtering criteria. Since we want to encourage users to explore
the data and see popular moves, we also implemented a function that
gets the most common next move. Using the current PGN, it iterates
through the data and find the most frequent next move and when the
button is clicked, it updates the board and plays said move. We also
have a reset button for ease of access to reset the board and data as
well as a status bar that informs the user who’s turn it is, whether or

https://database.lichess.org/
https://database.lichess.org/

not there’s any data that reflects the current game as well as other
standard chess rules (Check, Checkmate, etc.).

In addition to just being a fun addition and draw for the user, we
included an interactive chessboard to better visualize the opening
and move data, and interact with the other graphs via PGN to do so
while also allowing user input.

3.2.3 Stacked Bar Chart

We chose a stacked bar chart to show the success rates of each
opening, because both wins and draws are significant outcomes for
the chess player; in fact, at the highest levels, most chess games end
in a draw. We chose to represent wins in green and draws in blue,
drawing on their connotations to a positive and neutral outcome,
respectively. To demonstrate changes in the win and draw rates in
response to player movement, we animate this graph with transitions
to illustrate the direction in which the rates change. This allows the
user to visualize whether their move resulted in a better or worse
outcome across different ratings. The default win/draw rate is for
white, but it can also be set to black. When the user filters via the
other encoding, the bar chart updates to reflect it.

We also chose to bin the data points by rating points in increments
of 100, as it was sufficient to separate the data without cluttering
up the visualization. Since the x-axis represents rating, we added
“Amateur” and “Expert” markings to inform users that higher ratings
correspond to higher skill. We additionally added several interactive
elements to this chart:

1. When the user hovers over a stacked bar, a tooltip appears that
displays the total number of games represented in this bar, as
well as the exact win and draw rates. Because the stacked bar
chart shows percentages, the exact number of games allows
the user to contextualize how many games the bar represents.

2. The total number of games represented in the current graph, as
well as its proportion, is shown on the bottom of the graph at
all times. This allows the user to identify whether the moves
they made are common or not, allowing them to analyze the
opening further and encourage them to use the tooltip.

3. A drop-down selection embedded in the title of the bar chart
allows users to toggle between player perspectives, so that the
user can explore win/draw rates for both the white and black
pieces.

3.3 Filtering

With our encodings in place, we wanted to allow the user to filter
through the data in order to narrow down the visualization, get
information, and even see possible trends. Initially, we had only
filtered through the data via the aforementioned PGN, whereas we
would go through every data point, which has the PGN of the entire
game, and check if its PGN also starts with the opening PGN in
question. When the board gets updated, either through the treemap
or user input, the bar chart also gets updated, showing the win rates
as well as the total number of games that qualify.

While we still kept this, we wanted to filter across more parame-
ters as we expanded the project, got more feedback, and more data!
Based on initial feedback, we thought it would be a good idea to
filter across skill level, in order to allow users to explore certain skill
levels more in-depth and hopefully add a personalized feeling to it.
The lichess database contains the Elo, a calculated skill level based
on various criteria, of the players for each game, so we filtered on
that via a range slider. We also thought it would be interesting to
filter by date, so the user can use two dropdowns to set a start and
end date to filter the games based on when they were played. After
these two parameters are filtered upon, the treemap as well as the bar
chart update, allowing users to see if there are any different trends
when they zoom in.

Hover over the map to see the opening, click to see even more data, or just scroll down to play some chess!

Sicilian gueen's King's Caro-
Defense awn Pawn Kann
11.8% Game Game Defense

5.3% 3.5% 3.2%

Scandinavian
Defense -
4.6% Italian

ame fioves
&
French ‘E & W QE
Defense ik n

3.1% 2.4%
6.5% English
nngnmg Modern
‘ | Defense
2.4%

Figure 3: When hovering over a chess opening in the treemap, a
tooltip shows the user what the opening looks like, ie. the French
Defense.

See the opening and explore more by playing some chess yourself!

Win/Drau Rates for Chess Opening by Rating for [hite]

Jllllullllllllllll\L

1,000 1,500 2,000 2,500 3,000

100-

wm/nraw Rate (%)

Rating (Elo) Expert -

Figure 4: When clicked, the treemap, sends the opening’s PGN,
which updates the chessboard and bar chart showing the win rate
distribution by skill for that opening.

4 RESULTS

In this section, we present a case study that illustrates how our
visualizations address the problem we set out to solve. User A wants
to explore what chess openings good players like to play, and how
well they do.

The user can go onto the site and decide to explore the French
Defense, as seen in Fig. 3. After clicking on the treemap, they are
brought down to the chessboard and bar chart where the opening is
played and the win/draw rate across skill level distribution is shown.
They can see that lower rated players (less than 1500) tend to succeed
more than higher rated players, see Fig. 4. They can decide to take
a closer look into the game and play another move, including the
most common one, see Fig. 5, and see how the distribution typically
stays consistent for a few moves before branching. user A can also
go back to the beginning and look at the openings distribution more
closely by filtering by rating and/or year. When filtering for lower
rated players, the user can see that it is more equally distributed, as
seen in Fig. 6, while openings like the Sicilian and French Defense
are much more popular (more than 20% of games), for higher rated
players, see Fig. 7. This indicates that more skilled players tend to
stick towards a certain meta while lower players do not, whether it
be due to lack of skill, willingness to try different approaches, or
some other unknown reason. This is an example of what user can
do and what insights they may get when working with our site.

5 DiscussION

We observe that the interactivity offered by our interactive chess-
board is a major attraction for users. Our peer reviewers enjoyed the
experience of “playing chess” and having a dynamic visualization

See the opening and explore more by playing some chess yourself!

Win/Draw Rates for Chess Opening by Rating for [uhite

||||||||Illll|m

500 1,000 1,500 2,000 2,500 3,000
< Amateur Rating (Elo) Expert =

Total Games
2124 (2.951%)

Figure 5: The user can click on the Most Common Move button to
cause the visualization to filter for the most common next move based
on the PGN and play it, updating the graph, whose distribution stays
relatively similar.

Figure 6: The treemap when the skill level is filtered from 0-1500. The
distribution looks fairly equal.

Hover over the map to see the opening, click to see even more data, or just scroll down to play some chess!

Caro-
Kann
Defense
3.9%

Modern
Defense
2.8%

Figure 7: The treemap when the skill level is filtered from 1500-3000.
The distribution looks slightly less equal.

that responded to their actions. Thus, it seems that in exploratory
datasets such as this one, where there are many possible actions and
parameters that can be chosen, a good strategy to engage the user is
to allow them the option to make those decisions.

This visualization also demonstrates the importance of the process
of onboarding. We do so in three ways: (1) by visualizing the
named openings to users when they hover over the treemap, (2) by
allowing the user to populate the chessboard by selecting specific
openings, and (3) through instructive text positioned right above
each visualization, telling the user how they should interact with
them. For instance, above the treemap, we include the text “Hover
over the map to see the opening, click to see even more data, or just
scroll down to play some chess!” These elements reduce the barrier
to exploration for a new user.

Finally, performance and responsiveness is critical to the user
experience. In our visualization, we employed various strategies
to keep load times low, such as preprocessing our data to keep
only the necessary information, and taking care to only filter our
dataset when it is necessary. For instance, when the user makes a
move on the chessboard, only the stacked bar chart is reloaded, and
not the treemap. When we expanded our dataset to contain more
games across a wider range of time, we experienced serious lag as
the data got filtered and updated, detrimentally affecting the user’s
experience to the point where they sometimes did not understand
what was happening. In order to have a good range of data, we
decided to sample the available datafiles across time in order to have
a wide range of data without being too big. While we definitely
wanted to have more data available, we realized the importance of
balancing that with performance for sake of the UX, especially when
a big draw was the dynamic aspect of the chessboard.

6 FUTURE WORK

Our system could be extended in several ways. Firstly, we could take
advantage of the ability of treemaps to visualize hierarchical data by
showing continuations of openings within each node in the treemap.
For instance, within “Sicilian Opening”, we could populate nodes
showing the most common next moves after the Sicilian Opening is
played. Such an addition would add depth to the exploration. It also
further reduces the barrier to usability, since a newcomer to chess
can visualize the commonly-played moves in this way.

Furthermore, we can create more efficient data structures to store
the chess games, so that more games can be included in the visu-
alization. This could be done by indexing or grouping our data by
time or rating, so that filtering will be efficient. We can also employ
hashing to reduce the size of our dataset, for instance, by mapping
each opening to a number, and storing that number in our data file,
instead of the full string.

Finally, the lichess open dataset contains information beyond
those explored in this project, allowing many more interesting ques-
tions to be asked. For instance, what are the types of mistakes that
are made at each level? We may utilize the engine evaluations of
each move to determine when a mistake is made, and attempt to
visualize player behavior in this way. Another interesting question or
point of exploration would be the endgame. Much like the opening,
there is a lot of analysis that goes into the endgame of chess, so we
could characterize the types of endgames and look at how successful
players are in converting them into wins.

REFERENCES

[1]

2

—

[3]
[4]

[5]

[6

=

[7

—

[8

[t}

[9

—

[10]

[11]

[12]
[13]

[14]

chessboard.js. https://github.com/oakmac/chessboardjs/.
Accessed: 2021-05-18.

chess.js. https://github.com/jhlywa/chess.js. Accessed:
2021-05-18.

d3.js. https://d3js.org/. Accessed: 2021-05-18.

Histogram. https://observablehq.com/@d3/histogram. Ac-
cessed: 2021-05-18.

How many chess players are there in the
world?. https://www.chess.com/article/view/
how-many-chess-players-are-there-in-the-world. Ac-
cessed: 2021-05-18.

lichess.org open database. https://database.lichess.org/. Ac-
cessed: 2021-05-18.

Portable game notation (pgn). https://www.chess.com/terms/
chess-pgn. Accessed: 2021-05-18.

Stacked bar chart. https://observablehq.com/@d3/
stacked-bar-chart. Accessed: 2021-05-18.
Stockfish chess engine. https://github.com/

official-stockfish/Stockfish. Accessed: 2021-05-18.
Treemap. https://observablehq.com/@d3/treemap. Accessed:
2021-05-18.

H. Chitkara. How chess.com built a streaming empire. https://www.
protocol.com/chess-streaming-twitch-hikaru-botez. Ac-
cessed: 2021-05-18.

A. E. Elo. 8.4 logistic probability as a rating basis”. the rating of
chessplayers, pastpresent., 2008.

D. Hooper, K. Whyld, et al. The Oxford companion to chess. Oxford
University Press Oxford, 1984.

C. E. Shannon. Xxii. programming a computer for playing chess. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 41(314):256-275, 1950.

https://github.com/oakmac/chessboardjs/
https://github.com/jhlywa/chess.js
https://d3js.org/
https://observablehq.com/@d3/histogram
https://www.chess.com/article/view/how-many-chess-players-are-there-in-the-world
https://www.chess.com/article/view/how-many-chess-players-are-there-in-the-world
https://database.lichess.org/
https://www.chess.com/terms/chess-pgn
https://www.chess.com/terms/chess-pgn
https://observablehq.com/@d3/stacked-bar-chart
https://observablehq.com/@d3/stacked-bar-chart
https://github.com/official-stockfish/Stockfish
https://github.com/official-stockfish/Stockfish
https://observablehq.com/@d3/treemap
https://www.protocol.com/chess-streaming-twitch-hikaru-botez
https://www.protocol.com/chess-streaming-twitch-hikaru-botez

	Introduction
	Related Work
	Methods
	Data Cleaning
	Visual Encodings
	Treemap
	Interactive Chessboard
	Stacked Bar Chart

	Filtering

	Results
	Discussion
	Future Work

